The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X X X X X X 2 X X X 2 1 1
0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X+2 2X+2 2X+2 2 2X+2 2X+2 2X+2 2 0 0 0 2X 0 0 0 2X 2X 2X 2X+2 2 2 2X+2 2 2 2X+2 2X+2 0 0
0 0 2X 0 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 2X 2X 0 2X 2X 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 0 0
0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 2X 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 0 0 0 0 0
0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 2X 0 2X 0 0 0 0 0
generates a code of length 60 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 56.
Homogenous weight enumerator: w(x)=1x^0+12x^56+108x^58+284x^60+80x^62+19x^64+2x^66+4x^68+2x^82
The gray image is a code over GF(2) with n=480, k=9 and d=224.
This code was found by Heurico 1.16 in 0.172 seconds.